Lightweighting Techniques for Thermoplastic Polymers

by Maria Rosa Contardi, Maria Teresa Scrivani

K12 Midterm conference, May 18th 2017
Mission

Proplast
private R&D centre, representing the «actors» of polymer and composite materials and processing industry

To know more about partner companies see: http://www.proplast.it/en-us/Members/Detail
Our Premises

1998
C/O Politecnico di Torino
sede di Alessandria
Academic training (Politecnico di Torino)

proplast
specialized training
(focused training)
proplast
personnel recruitment

proplast
basic and fundamental research
(performed in cooperation with Universities)

2008
C/O Parco tecnologico - Rivalta Scrivia

new premises
C/O Parco tecnologico - Rivalta Scrivia

proplast
technical services for SMEs
Product engineering
process engineering
materials engineering
technology transfer
applied research
eco-design
international cooperation

2013
Sedi in Provincia di Palermo
(S. Flavia e Bagherla)

proplast
basic and fundamental research
(performed in cooperation with Universities)
Our activities

- Technical training
- Process Engineering
- Product Engineering
- Plastics Academy
- Materials Engineering
EU collaborative research projects

PLASTICIRCLE

Improvement of the plastic packaging waste chain from a circular economy approach (H2020)

FIRE-RESIST

Developing Novel Fire-Resistant High Performance Composites (FP7)

Phos-IstoS

Development of biophotonic device based on flexible light emitting textile dedicated to the monitoring and treatment for dermatologic diseases and carcinoma (FP7)

multiHYBRIDS

Innovative sensor-based processing technology of nanostructured multifunctional hybrids and composites (FP6)

LIGHT PET

Innovative process and solutions to reduce the weight of PET containers and boost the diffusion of the green (Life+)
National collaborative research projects

GreenFactory4Compo
Green Factory for Composites
(Regione Piemonte - Piattaforma «Smart Manufacturing»)

DIATEME
Dispositivi ad alto contenuto tecnologico per il settore biomedicale (progetto PON, “Ricerca e Competitività 2007 – 2013” Regioni Convergenza)

POLILED
Materiali polimerici per LED ad alta efficienza (Regione Piemonte - Bando «Poli Innovazione»)

WIN-STREET
Water IN: STReet design with Environmental Engineering Technologies (for urbanized areas) (Regione Piemonte - Bando «Poli Innovazione»)

FILGREEN
Studio di fattibilità di FILati a base GRafenE per l’immagazzinamento di Energia (Regione Piemonte - Bando «Poli Innovazione»)

3D Filter
Stampa 3D per miglioramento di membrane per filtrazione di gas
Regione Piemonte - Bando «Poli Innovazione»)
Classes for graduated students
- post University specialization degree in Polymer Science and Technology

Classes for high school graduates
- injection molding
- mold maintenance
- CAD for plastics

Classes for people working in the plastics sector
- more than 30 different theoretical and practical classes on plastics materials and processing technologies held every year
- training courses designed upon specific company needs
Seminars and conferences about new materials and new technologies

Events examples:
- Heat & Cool Technologies
- Conductive Polymers
- Technical conference on Mucell® technology
- Energy management for the plastic processing industry
- Polymers compounding
- Scientific moulding
- Fiber reinforced composites
Tailoring of formulations vs. the final application by the means of different technologies (compounding, melt blending, reactor and solid state polymerisation)

Explorative and feasibility studies about new polymers and additives

Environmental sustainability:
 • biopolymers
 • polymers for green applications (photovoltaics, membranes)
 • recycling of post-consumer waste

Development of high-performance polymeric materials:
 • flame retardant materials
 • nanocomposites
 • high stability polymers (vs. aging, weathering, stress cracking)
 • metal replacement
 • thermoplastic polymers
 • adhesive polymers
 • food packaging materials
 • conductive plastics
Process engineering

- Injection molding (Heat-and-cool, Roctool®, Mucell®)
- Pre-series molding
- Compounding
- Film extrusion
- Thermoforming
- Thermoplastics & thermosets composites
- Metal/ceramic injection molding (MIM, CIM)
Product and process engineering

- Development and optimization of new products
- Design and manufacturing of pilot molds
- Rapid prototyping

FEM structural simulations

- Static/dynamic non linear analysis
- Impact analysis
- Modal/vibrations analysis

Process simulations

- Thermoplastics injection molding simulations
- Thermosetting injection molding simulations
- Blow molding/thermoforming simulations
- Thermal analysis
Lightweighting in injection molding: the MuCell® technology

The two key elements of MuCell technology:

1. Lowering of the viscosity of thermoplastic resins by controlled feeding of gas (either N₂ or CO₂) into the melt
2. Creation of a microcellular structure in the part core by gas expansion in the cavity

Proplast demo line
Installed on Engel injection machine - 180 tons, 55 mm screw
100-500 grams typical part size
CO₂ or nitrogen
Lightweighting in injection molding: the MuCell® technology

Dissolving SCF into the melt

- Screw flights break-up SCF stream
- Mixing flights cause SCF to divide into smaller bubbles and then dissolve

A single phase solution is created by injecting the SCF (super critical fluid) into the thermoplastic melt during screw recovering.
Lightweighting in injection molding: the MuCell® technology

MuCell line typical layout
Lightweighting in injection molding: the MuCell® technology

Typical ‘sandwich’ structure of MuCell parts:

Compact skin - Foamed core - Compact skin
Lightweighting in injection molding: the MuCell® technology

Foaming occurs during injection into the mold

- Low pressure in the mold cause SCF to form cells
- Cells grow until the material freezes or the mold cavity is full
Lightweighting in injection molding: the MuCell® Process

MuCell benefits

• Cavity
 foaming process instead of post pressure
 lower clamping force

• Injection unit
 lower viscosity, leading to better filling behavior and lower pressures
 better filling behavior
 new part design and gate positioning possible
 potential temperature decrease

• Part
 integral structure
 lower part weight
 less warpage
 no sinkmarks
Lightweighting in injection molding: the MuCell® Process

Productivity improvement: overall cycle time reduction

- Opening/Eject./Closing
- Injection
- Pack&Hold
- Cooling

Solid

MuCell®

Hold time (nearly) eliminated

Reduced cooling time

Δ_T depends on material type, part design and mould cooling
Lightweighting in injection molding: the MuCell® Process

Productivity improvement: reduction of hydraulic pressure

- **Solid**
 - Peak $p_c = 1045$ bar

- **MuCell®**
 - Peak $p_c = 448$ bar

- 57 % reduction in peak cavity pressure
- Due to viscosity reduction, less resin volume, no pack & hold pressure
- Longer tool life

Data Com Connector, PBT 30 % GF
Case History #1: Cam Cover

Achieved benefits:

- 30% reduced machine size (350 instead of 500 ton for conventional molding)
- Improved cycle times, allowing for simultaneous production and assembly process
- Lighter part
- Improved flatness
Lightweighting in injection molding: the MuCell® Process

Case History #2: Dual fan shroud

Achieved benefits

- Typical weight reduction 7-10%
- Machine size reduction from 1000 tons to 500 tons
- Cycle time savings of 25-40%
- 200% improvement in fatigue resistance
- Cpk values improved by 50%
Roctool Processes

Advanced Heat & Cool technology for Composite and Plastic Injection molding by using electromagnetic induction allows to heat a mould in a matter of seconds.

Roctool benefits

- Optimal surface quality: glossy or mat, no visible weld lines
- Thickness reduction is possible
- Mechanical properties increased
- Pressure reduction
- High temperature molding is possible
- Very fast heating of the mold
Promix Solutions

- In extrusion processes temperature differences in the melt are generated by the plasticizing process in the screw, melt pumps, screen changers and even by empty pipe sections.

- Melt Blenders such as Promix blenders efficiently equalize temperature variations over the whole cross section.

Equal melt temperature and velocity are key for high quality extruded products.
In an empty pipe polymer melts will form a laminar profile

Promix melt blenders destroy the laminar profile and create a very effective cross mixing resulting in:

- Equal velocity
- Equal temperature
- Narrow residence time distribution
- Excellent melt homogeneity
Processing: light weight extrusion - Promix
Processing: light weight extrusion - Promix

Effective temperature homogenization
Processing: light weight extrusion - Promix

Benefits of Promix Mixing Nozzles

- Effective avoidance of color streaks
- Equalized color depth / better color appearance
- Saving of 20 – 30% master batch (= 1’000 to >10’000 Euro savings / year)
- No brilliant spots due to homogenization of temperature profile
- Reduced cycle time due to optimized processing parameters
- Better tolerances
- Improved processing of recyclates (usability of more recylcate or better product quality)
- Improved balancing of hot runner systems

3-4 shots of non colored PP can purge out the blue masterbatch

shot 1 shot 2 shot 3 shot 4
Promix foaming system is a patented process for the production of extruded microcellular foams.

Main features:

- Significant weight and cost reductions
- High quality microcellular foams
- Density reductions of 10 to >70%
- Use of the environmental friendly blowing fluids CO2 und N2
- No licenses
Promix foam extrusion systems are installed downstream of the existing extruder barrel and consist of components for fluid injection, homogenization and cooling. The blowing fluid is provided by a high precision gas dosing station.
Advantages of physical vs. chemical foaming:

- Fast amortization of investment, usually < 1 year
- Higher process stability, better cell structure
- Lower foam densities possible
- No health risks due to chemical residues
- Production waste is 100% recyclable
- Improved cell structure and smoother surface in foam extrusion, thanks to mixers
Processing: light weight extrusion - Promix

Installation example

600 kg/h PP sandwich board line, foam density 500 kg/m³

Feed block / die Melt cooler Static mixing module

Fluid injection module
Processing: light weight extrusion - Promix

Case History #1: dairy products packaging

PS foam sheet
Thermoform application for dairy products
Substitution of chemical foaming

Result:
- Reduction of foam density
- Better process stability
- Better foam structure
Case History #2: PP foam core pipes

PP foam sheet
Automotive application
Density 210kg/m³ (13lb/ft³)

Result:
• Reduction of foam density
Thanks for your attention

Proplast - Consorzio per la promozione della cultura plastica
Strada Savonesa, 9 – 15057 Rivalta Scrivia – AL
Tel: +39 0131 1859711
proplast@proplast.it
www.proplast.it